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1. Code Descriptions and code benchmarks



/M3D-C' and NIMROD solve 3D MHD Equations in Toroidal

fi"eometry iIncluding Impurity Radiation and Runaway Electrons
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A Also, separate equations for resistive wall and vacuum regions
A Codes have a fluid model for Runaway Electron curdgpt(with sources)
A Impurity pellet ablation models



M3D-Ctand NIMROD have very different

numerical implementations

M3D-Ct NIMROD
Poloidal Direction  Tri. Ct ReducedQuintic FE High. Order quadX® FE
Toroidal Direction Hermite CubidC'FE Spectral
Magnetic Field B=5 P fPF +/ D B BR=BE B~
Velocity Field ~ V=R:8) /b W J/BR+ OV VYR=yZ &
Coupling to Conductors same matrix Separate matrices w interface

Both codes use:
A Split Implicit time advance
A Block-Jacobi preconditioner based @uperLU_DISBr MUMPS

A GMRES based iterative solvers
A Impurity ionization and recombination rates from KPRAD
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‘Because the two codes use different representations, but solv

he same equations, they are a very good check on one anoth

3A0OAOAT OAAAD AEOASG OAOEAZEAAOEIT AGAOAEOAO EI O

Disruption Mitigation in 2D
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Disruption Mitigation in 3D

In progress (2021/2022)
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A Code verification exercise starts with realistic
DIIED equilibrium to which argon has been
added

A Shown at left are the M3@land NIMROD
electron temperatures at 3 times during the
argonrinduced quench. (color scale varies at
each time.)

A Also shown and in excellent agreement are
the time histories of global plasma guantities
such as thermal energy, plasma current, and
total number of electrons.

A This provided an invaluable check on both
the ionization, radiation, and MHD routines,
and several (minor) errors were corrected.

Lyons,Kim et ap, PPCFE1(2019), 9



Equilibrium poloidal
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A Realistic equilibrium (NSTX) but simplified geometry that all
codes can handle (rectangular resistive wall)

A Codes agree to within a few % on growth rates over wide range
of wall resistivity. Excellent check on resistive wall routines

I. Krebs, C. Sovineet al, PhysPlasmas27 (2020 10



2 C NonlinearVDE benchmark between M30 NIMROD & JOREK
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A Good agreement amongst 3 codes on time evolutioplasmaand
wall currents plasmapositionand the halo current distribution.

l. Krebs, C. Sovineet al, PhysPlasmas27 (2020 11



3D NonlinealvDE benchmark between M30', NIMROD, and JOREK

JOREK

M3D-C1

NIMROD

A Shown at left are the evolution of the pressure at
planef =0 for the 3 codes at late times, aftern >0
instabilities have set in. Poincare plots showing the
magnetic topology are overlaid.

A Below are the zosition of the magnetic axis and
plasma current vs time for the 3 codes
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A M3D-Cland NIMROD modeling same SPI Mitigation shot on-DIfbr benchmark

A Initial comparisons showed differences near boundary, M3Baw return flow on
open field lines, NIMROD did not

NIMROD S
A After much digging, it turned out

that M3D-Ctand NIMROD were
implementing the neslip boundary
condition differently at the wall.

, M3DLC

A M3D-Clwas forcing both the strean
[ function and the potential parts of
I I the velocity field to vanish at the
boundary, not just their sum

A After this was corrected, the 2 codes agreed much better (next slide)!
13 Lyons, Kim



3D-C1 flow fields before and after slip boundary conditions are correc

before after
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uncovered if not for this benchmark

14 Lyons, Kim
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2. Forces due to Vertical Displacement Events
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Vertical Displacement Events (VDEsN

occur when vertical position control is lost

A We have calculated the forces to be expected in the ITER vessel in both the
vertical and horizontal directions

A The vertical forces can be computed in 2D,but the horizontal require 3D

5.3 T15MAITER

Equilibrium Wall contact Start TQ Final 16 . Krebs



TheVDEInducesboth toroidal and poloidal currents in the

vessel, both of which cause large forces duetoJ x B
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A Plotted arethe wall forces arise due both to the toroidal
currents (top) and the poloidal halo currents (bottom)

Halo currents ( shown in
yellow) pass between A We found that the large force due to halo currents is

plasma and structure compensated by reduced force due to toroidal currents !!
\ C.Clauser, NF 59 (201



TheVDEInducesboth toroidal and poloidal currents in the

vessel, both of which cause large forces duetoJ x B
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A Plotted arethe wall forces arise due both to the toroidal
currents (top) and the poloidal halo currents (bottom)

Halo currents ( shown in
yellow) pass between A We found that the large force due to halo currents is

plasma and structure compensated by reduced force due to toroidal currents !!
\ C.Clauser, NF 59 (201



A Alan Boozer wrote a paper claiming that a fast
current quench in ITER would cause it to

Cold VDE In ITER due to current guench
become unstable to a VDE, even if the walls

(a)m( e \ (b)m—"'\ (c)
| were perfectly conducting
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5 ! A His analytic analysis madenumber of
, k o S / geometrical simplifications (rectangulam)
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assumptions, we recover his result numerically

A However, extending this to more realistic ITER
geometry and parameters, we found that this was not
a significant concern for ITER

19
Clauser< Phys Plasm&8(2021)



